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Summary. We propose a new method to describe scaling behavior of time series.
We introduce an extension of extreme values: maximum and minimum. By using
these extreme values determined by time-space scaling with a spread (or width),
functions of this spread are defined. One is the number of these extreme values,
and the other is the total variation among these extreme values. These functions
are independent of time scale. In high frequency data, observations can occur at
varying time intervals. In particular, on fractal analysis, interpolation influences
the results. Using these functions, we can analyze non-equidistant data without
interpolation. Moreover the problem of choosing the appropriate time scale to use
for analyzing market data is avoided. In other words, "time’ is defined by fluctuations
here. Lastly, these functions are related to a viewpoint of investor whose transaction
costs coincide with the spread.
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1 Introduction

High frequency data is not equidistant in physical time by nature. For in-
stance, transactions in tick-by-tick data do not occur in equal intervals through-
out the day. We can convert them into the data of equal intervals by inter-
polation. But the choice of the interpolation method influences the nature of
the time series. In particular, on fractal analysis, the effect of interpolation is
significant to the results. Further, between transactions, prices are not exist-
ing, not unobserved. Thus, interpolation is not proper for tick-by-tick data.
In this paper, we present a new method to analyze non-equidistant data of
financial time series. In fractal analysis of one-dimensional time series, scal-
ing is applied on time, along the horizontal axis. We introduce a new type of
scaling of fluctuations, scaling together with the vertical axis.

Moreover, even if data is equidistant in physical time, there remains the
problem of choosing the appropriate time scale to use for analyzing market
data. There are at most three candidates for the proper time scale: the phys-
ical time, the trading time, and the number of transactions. For instance,
Clark [1] assumed that events important to the pricing occur at a random,
not uniform rate through time. In short, 'time’ which evolve economic activ-
ities is not passing uniformly. Since it is difficult to select from these three
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candidates, this paper proposes a method to avoid this difficulty. Using local
maxima and minima determined by time-space scaling with spread C, we can
construct some functions independent of time scale. Using any of these time
scales, the function is the same. In this paper, 'time’ can be defined in terms
of the number of fluctuations.

Lastly, this new method has a close relation to transaction costs and
viewpoints of investors. We observe the price series from viewpoints of in-
vestors. The investors pay some costs at each transaction. The transaction
costs include bid-ask spread and sale commission, for example. Therefore, if
fluctuations of price are smaller than these costs, they can not make a profit.
For this reason, the investors observe the price series within a tolerance of
these costs. They ignore fluctuations smaller than transaction costs.

This paper is organized as follows. Section 2 defines extreme values deter-
mined by time-space scaling with a spread C. Further the number of extreme
values and the total variation are formulated as functions of C. Section 3
applies this method to financial time series. The properties of the functions
are described using tick-by-tick data.

2 Scaling of fluctuations

First, we present an extension of extreme values of function. In Kumagai [2],
local mazimum determined by time-space scaling with C was defined as fol-
lows. Suppose ¢ is a real function defined on R'. We say that ¢ has a local
mazximum determined by time-space scaling with C' at a point t, if there exist
dy,d2 > 0 such that g(t — d1) < g(t) — C,g(t +d2) < g(t) —C , and in
[t —dy, t+ds], g attains its maximum at t. Figure 1 shows an example of time
series and its extreme values. As shown in Figure 1, by observing the graph
through a slit (denoted by two parallel dashed lines), we can detect these
maxima easily. The spread (or width) of this slit is C, and the length is not
limited. The local maximum determined by time-space scaling with 0 means
the ordinary local maximum. The width C' is the accuracy of measurement of
extreme values. That is, we determine the local maximum within an accuracy
of C.

Local minimum determined by time-space scaling with C' is defined like-
wise. Suppose ¢ is a real function defined on R!. We say that ¢ has a local
minimum determined by time-space scaling with C at a point t, if there exist
d1,d2 > 0 such that g(t — di) > g(t) + C,g(t + d2) > g(t) + C , and in
[t — di,t + d2], g attains its minimum at ¢. Figure 1 shows an example.

Now we define two functions using these extreme values. Throughout this
section, suppose that the time series ¢(t) is defined in a given interval [0, S].
Let C' denote a vertical spread (or width). In this interval[0, S], we can detect
extreme values determined by time-space scaling with C. Suppose g(t) attains
its extreme values at t{ < t§ < t§ < ---, ordered increasingly. With g(t)
fixed, the number of these maxima and minima in [0, S] is a function of C'. Let
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Fig. 1. Example of extreme values determined by time-space scaling with spread
C'. The zigzag line denote a function g(¢). The function g attains its local maximum
determined by time-space scaling with C' at t1, but g does not attain its maximum
at to1. Using a pair of parallels whose distance is C' (denoted by dashed lines), we
can detect these extreme values. On the other hand, ¢ attain its local minimum
With C at tz, not at toz.

m(C') denote this number of the extreme values. Figure 2 shows an example
of the function m calculated from empirical data ! . The data are chosen
from three categories: currency, commodity futures and stock 2 .

The property of this function is the following. By definition, m(C) is
monotone decreasing in the wider sense. Further m is a step function con-
tinuous from the right, not from the left. If C'p is larger than the range:
Cp > maxg(t) —ming(t) , m(Cr) = 0. Besides, m(0) is the number of the
ordinary extreme values in the interval. Let Cy be one of the points at which
m is discontinuous. Then there are some pairs of the extreme values: maxi-
mum and minimum whose difference is C. Let k& denote the number of these
pairs. In other words, the number of fluctuations whose size is equal to C is
k. Assuming that a positive value ¢ is sufficiently small, we obtain

m(C1) — m(01 — 5) = 2k,
m(C’l + 5) — m(Cl) =0. (1)

1 All tick-by-tick data used in this study are supplied from Cyber Trading/ Risk
Laboratory of Keio University.

? Using a method similar to this paper, Kumagai [3] reported the analysis on daily
closing price of commodity futures markets: gold futures in Tokyo Commodity
Exchange and soybean futures in Tokyo Grain Exchange.
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Fig. 2. Double logarithmic plot of the number of extreme values: m(C) with C.
The sample period is 5 trading days from May &8, 2000 to May 12, 2000, for three
contracts: USD/JPY exchange rate (o), W'IT (1st. month) in New York Mercantile
Exchange (A), Hitachi in Tokyo Stock Exchange (e)

Next we introduce a kind of total variation of time series. Let R(C') denote
the total sum of absolute variation between neighboring extreme values:

m(C)—1

R(C) = Z lg(tit1) — g(ti)l- (2)

=1

Figure 3 shows an example. The data used are the same as Fig. 2.

By definition, R(C') is monotone decreasing in the wider sense. Further-
more R is a step function continuous from the right as m. If Cp, is larger than
the range: Cr, > maxg(t) — ming(t), R(Cr) = 0. If C = 0, R is the total
sum of absolute variations : R(0) = lim,, o0 Y _p_; [9(kS/n) — g((k —1)S/n)|
. Let C'1 be one of the points at which m is discontinuous as before. Further
let k denote the number of the pairs of the extreme values: maximum and
minimum whose difference is C. This means that & is the number of fluctu-
ations whose size is C'1. Assuming that a positive value ¢ is sufficiently small,
we obtain

R(Cl) - R(Cl - (S) = C’l(m(C'l) — m(C’l — 5)) = 2/601,
R(C1 +8) — R(C1) = C1(m(Cy — 8) = m(CY)) = 0. 3)

The first equality of each of Equations (3) holds everywhere. Thus, in general,
the relation between the total variation and the number of extreme values
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Fig. 3. Double logarithmic plot of the total variations: R(C) with C. The sample
period is 5 trading days from May 8, 2000 to May 12, 2000, for three contracts:
USD/JPY exchange rate (o), WTT (1st. month) in New York Mercantile Exchange
(A), Hitachi in Tokyo Stock Exchange (e)

with C is

R(C) — R(C — §) = C(m(C) — m(C — 5)). (4)

Let v : [0, 5] — [0, S] be a monotone increasing continuous function. To
show the dependence of the function clearly, we designate m by m(C, g(t))
and R by R(C, g(t)) for a while. Suppose g(t) attains its extreme values at
t{ < t§ < t§ < ---, ordered increasingly. Then, g(v(t)) attain its extreme
values at v(t{) < v(t§) < v(t§) < ---. Thus, the number of the extreme
values m does not change by this transformation of time scale: m(C, g(t)) =
m(C, g(v(t))). Further, the total variation R is also independent of time scale:
R(C,g(t)) = R(C,g(v(t))). In other words, m(C) and R(C) are invariants
for time scale stretching 3 . This property is significant to investigate non-
equidistant data like tick-by-tick. Furthermore, there is no absolute time scale
in financial time series. Thus, in the next section, we apply this method to
financial time series.

3 The function m(C) is also an invariant for space scale stretching. The transfor-
mation using a monotone continuous function can not change m.
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3 Application to financial time series

Above defined functions are related to the ex-post optimal trading. Let g(t)
denote a price at time point ¢t. Here we classify the costs for investor into two
categories: one is in proportion to the number of transactions, and the other
is in proportion to the period of taking position. Let C' denote the former:
the costs at every transaction per unit. These costs include bid-ask spread,
tax, and sale commission. On the other hand, the costs in proportion to the
period of taking position are not included. For example, opportunity costs of
margin requirement are not considered here.

We assume that C'is constant throughout the interval [0, S]. As previous
section, local maxima and minima can be determined by time-space scaling
with C. By using these extreme values, the functions m(C) and R(C) are
obtained. Throughout this section, we assume that the return of safety assets
is equal to zero. Hence, if the investors buy at local minima and sell at
local maxima, their profit is maximized. Because of the uncertainty of the
price, none of them actually can trade at these extreme values. Therefore,
this strategy is optimal in ex-post meaning: maximizing the profit when the
complete expectation is obtained. In short, the investors observe the price
series with the required accuracy in consideration of the transaction costs.
In this strategy, the number of transactions in the interval [0, S] is m(C).
Besides, the total variation R(C) corresponds to the sum of the return and
the transactions costs per unit. Thus, subtracting the transaction costs from
the total variation, the return per unit is defined as follows:

1(C) = R(C) — Cm(C). (5)

Since this profit is obtained by the ex-post optimal trading, it can be said as
maximum profit. Figure 4 shows an example. The data used are the same as
Fig. 2 and 3.

By definition, I7 is non-negative monotone decreasing. As m and R, IT is
continuous from the right. Furthermore, even at the discontinuous points of
m and R, by Equation (4), IT is also continuous from the left. Let C; denote
one of these points,

lim I1(Cy = 6) = H(C). (6)

Therefore IT(C) is continuous everywhere.

Next, we describe the relation between the return I7 and the number of
extreme values, i.e. the number of transactions m # . The left-hand derivative
of IT: IT"_(C) is

=-—m(C —9).

4 Kumagai [3] mentioned this briefly.
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Fig. 4. Double logarithmic plot of the profit per unit: I7(C) = R(C)—Cm/(C) with
C. The sample period is 5 trading days from May 8, 2000 to May 12, 2000, for three
contracts: USD/JPY exchange rate (o), WTI (1st. month) in New York Mercantile
Exchange (A), Hitachi in Tokyo Stock Exchange (e)

On the other hand, the right-hand derivative H; (C) is

17,(0) = lim H(C”;_H(C) — —m(C). (8)

Hence IT is not differentiable at the discontinuous points of m (and R) .

As previously described, m and R are independent of time scale. Hence, IT
is also independent of time scale. These functions m, R, and IT are invariants
of time scale stretching. This property is important from the following rea-
sons. Firstly, transactions of high frequency data do not occur equidistantly
in physical time. Moreover, in the financial market, there is no appropriate
choice of time scale. Since there are merits and demerits in any candidates for
time scale, it is difficult to select the best. The ordinary fractal analysis de-
pends on time scale. Therefore, this independence to time scale is important
property in analysis on financial time series.

Figure 5 shows a simple example of time series and its nest structure.
Figure 6 shows the time series and nest structure of foreign exchange rates.
Figure 7 magnifies a part of Fig. 6 . In these figures, the solid line shows
the time series, and the nested rectangles of gray and white describe the nest
structure of the fluctuations. With transaction costs C' fixed, we divide the
whole interval at maxima or minima determined by time-space scaling with
C. An increasing interval from maximum to minimum is denoted by white. A
decreasing interval from maximum to minimum is denoted by gray. Smaller
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Fig.5. An example of nest structure of fluctuations. The zigzag line (solid lines)
shows a time series g(t) for the right-side scale. The two nested rectangles (dashed
lines) represent the pairs of the extreme values: maximum and minimum. Shifting
down these rectangles (along dotted lines), we put their bases on the horizontal
axis. The outer gray rectangle represents the decreasing period, and the inner white
rectangle represents the increasing period

fluctuations are observed by higher resolution. One rectangle corresponds
to a pair of the extreme values: maximum and minimum. In each rectangle,
there are some smaller rectangles. Further, in these rectangles, there are some
much smaller ones. These figures show the nest structure of fluctuations. The
line of level C' crosses these rectangles at the extreme values determined by
time-space scaling with C. These intersections divide the line of level C' into
intervals painted by white or black. The intervals shown by white line denote
increasing periods, and the intervals shown by solid lines denote decreasing
periods. This shows how an investor with transaction costs C' observes the
price time series. In these figures, the function m(C) corresponds to the
number of intersections of the rectangles and the horizontal line of level C.
Further, R(C) corresponds to the sum of the length of vertical laterals of
the rectangles crossed by this line of level C. In Fig. 5, m(C) and R(C)
are invariants for time-space scale stretching in the dashed rectangles whose
height is smaller than C. This means that they do not vary with fluctuation
or interpolation in the rectangles. In other words, 'time’ passes by when a
fluctuation occurs, not when the trading time passes on.

4 Conclusion

In this paper, we proposed a new method to analyze non-equidistant data.
Our method has three remarkable features as follows. Firstly, using this
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Fig. 6. Time series and nest structure. The prices are plotted in solid line along
right-hand scale. Nests of the rectangles represent nests of fluctuations. A gray
(striped) or white rectangle represents a pair of extreme values: maximum and
minimum. The altitude of the rectangle, which is measured by left-hand logarith-
mic scale, represents the transaction costs with which these extreme values are
determined. The data set is tick-by-tick currency exchange rates of USD/JPY from
May 8, 2000 to May 12, 2000. The number of data is 36040 The origin of the time
scale is 0:00 May 8, 2000 (GMT)

method, we can analyze non-equidistant data without interpolation. Sec-
ondly, the result is independent of time scale. Lastly, the variables and the
functions are related to a viewpoint of investor with transaction costs. Fi-
nancial market is not temporally homogeneous. This method captures a new
type of scaling behavior for non-equidistant data. We plan to improve this
method, and to study high frequency data of financial time series.
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Fig. 7. Magnification of a part of Fig. 6. The prices are plotted in solid line along
right-hand scale. Nests of the rectangles represent nests of fluctuations. A gray
(striped) or white rectangle represents a pair of extreme values: maximum and
minimum. The altitude of the rectangle, which is measured by left-hand logarith-
mic scale, represents the transaction costs with which these extreme values are
determined. The data set is tick-by-tick currency exchange rates of USD/JPY in
May 10, 2000. The origin of the time scale is 0:00 May 8, 2000 (GMT)
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