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Abstract. There is an information geometry associated with the theory of interest
rates. This arises from the fact that the system of smooth yield curves is isomorphic
to the convex space of density functions on the positive real line. The arbitrage-free
interest rate dynamics of Heath, Jarrow & Morton (1992) can be represented as a
process on this space. Properties of this process are investigated and some special
cases examined.

Recently there has been a growing interest in modelling the interest rate term
structure as a dynamical system (see, e.g., Musiela 1993, Björk & Svensson 1999,
Björk & Christensen 1999, Björk & Gombani 1999, Björk 2000, Brody & Hughston
2000, Filipović 2000). The idea is a simple one: we treat the yield curve as a math-
ematical object in its own right, a “point” ρ lying in a space M, which we identify
as “the space of all possible smooth yield curves”. Then with the specification of
an initial yield curve ρ0 we wish to understand the resulting dynamics, which we
model as a random trajectory ρt in M. The following questions then arise: How
do we best model M? What natural structures exist on M that might assist us
in determining the dynamical laws governing ρt? These questions are interesting
because the standard HJM theory (Heath, Jarrow & Morton 1992) of arbitrage-free
interest rate dynamics makes no use of specific structures on M. The thought is
that by bringing the structure of M into play it will be possible both to clarify
the status of existing interest models, and to devise new interest rate models that
might form a more adequate representation of the properties of observed interest
rates. In what follows we shall sketch some tentative examples of new models that
can be developed by following this line of argument.

The key point we emphasise here is that there is a natural information geometry

1) Appeared in Disordered and Complex Systems (p. 281-287), P. Sollich, A.C.C. Coolen, L.P.
Hughston & R.F. Streater, eds., AIP.



associated with the space of yield curves. This comes about as follows. Let t = 0
denote the present, and P0T a family of discount bond prices satisfying P00 = 1,
where T is the maturity date (0 ≤ T < ∞). We impose the economic condition
that interest rates should always be positive by means of the following criterion:

Definition. A term structure will be said to be admissible if the discount function

P0T is of class C2 and satisfies 0 < P0T ≤ 1, ∂TP0T < 0, and limT→∞ P0T = 0.

The remarkable fact about an admissible discount function P0T is that it can
be viewed as a complementary probability distribution: we think of the maturity
date as an abstract random variable X, and for its distribution we write Pr[X <
T ] = 1−P0T . Then the associated density function ρ(T ) = −∂TP0T clearly satisfies
ρ(T ) > 0 for all T , and

∫∞

T
ρ(u)du = P0T . Now suppose we define the positive real

line R1+ = [0,∞). We shall say a density function is smooth if it is of class C2 on
R1+. Then we have the following characterisation of the space M:

Proposition 1. The system of admissible term structures is isomorphic to the

convex space D(R1+) of smooth density functions on the positive real line.

The requirement that P0T should be C2 is to some extent arbitrary, and we
may consider strengthening or weakening this condition slightly. It is reasonable,
however, to insist that the forward short rate curve f0T = −∂T lnP0T should be
continuous and nonvanishing for all T <∞.

The space of probability distributions on a given sample space has natural geo-
metric properties. In particular, given a pair of term structure densities ρ1(x) and
ρ2(x) we can define a distance function φ12 on M by the formula:

φ12 = cos−1
∫ ∞

0

ξ1(x)ξ2(x)dx, (1)

where ξ(x) =
√

ρ(x). We call this ‘angle’ the Bhattacharyya distance between the
given yield curves. The geometrical interpretation of φ12 is as follows. The map
ρ(x)→ ξ(x) associates to each point of M a point in the positive orthant S+ of the
unit sphere in the Hilbert space L2(R1+), and φ is the resulting spherical angle on
S+. We note that 0 ≤ φ < 1

2
π and that orthogonality can never quite be achieved

on account of the requirement that forward rates are always nonvanishing.

Example 1. The discount bond family P0T = exp(−rT ) for constant r determines
a ‘flat’ term structure with a continuously compounded rate of interest r for each
value of the maturity date T . The spherical distance between two such yield curves
is φ12 = cos−1

(

2
√
r1r2/(r1 + r2)

)

. ♦
We note that in this case the distance function is determined by the ratio of the

geometric and arithmetic means of the corresponding rates.

Example 2. The discount bond family P0T = (1 + κ−1rT )−κ for constant r and
κ corresponds to a ‘flat’ term structure with a constant annualised rate of interest
r assuming a compounding frequency κ over the life of each bond (κ need not be
an integer). In particular, the spherical distance between two such yield curves for
κ = 1 is φ12 = cos−1

(

ln(r1/r2)
√
r1r2/(r1 − r2)

)

. ♦



The spherical distance computation is applicable when we wish to make a com-
parison in nonparametric situations. In the case of a parametric family of yield
curves we consider the corresponding submanifold of M and the Fisher-Rao geom-
etry induced on this submanifold (cf. Brody & Hughston 1998).

Now suppose we write PtT for the random value at time t of a discount bond that
matures at time T , where T ∈ R1+ and 0 ≤ t ≤ T . We assume for each value of T
that PtT is an Ito process defined on the interval t ∈ [0, T ], for which the dynamics
are given by dPtT = mtTdt + ΣtTdWt. The process Wt, to which PtT is assumed
to be adapted, is a standard Brownian motion taking values in a separable Hilbert
space H (cf. Da Prato & Zabczyk 1992, Filipović 2000). The absolute drift mtT

thus defined, along with the absolute volatility process ΣtT , which takes values in
the dual Hilbert space H∗, are assumed to satisfy regularity conditions sufficient
to ensure that ∂TPtT is also an Ito process. For interest rate positivity we require
0 < PtT ≤ 1 and ∂TPtT < 0. Additionally we impose the boundary conditions
PTT = 1, limT→∞ PtT = 0, and limT→∞ ∂TPtT = 0.

We define the short rate rt = ρtt, and the forward short rate ftT = ρtT/PtT .
Because PtT is positive, ftT is an Ito process iff ρtT is an Ito process. We note that
ftT is the forward rate fixed at time t for the short rate at time T . The formula
∫∞

t
ρtudu = 1 says that the value at time t of a continuous cash flow that pays the

small amount ftudu at time u is unity. For no arbitrage we require the existence of
an H∗-valued process λt, independent of T , such that mtT = rtPtT + λtΣtT . We do
not assume the bond market is complete.

To proceed further, we introduce the Musiela parameterisation x = T−t for time
to maturity and write Btx = Pt,t+x for the bond price thus parameterised. Thus
Btx represents the price at time t of a bond for which the time left until maturity
is x, and we have the dynamical relation

dBtx = (rt − ft,t+x)Btxdt+ Σt,t+x(dWt + λtdt), (2)

which has a simple intuitive interpretation. Now suppose we write ρt(x) = −∂xBtx.
Because ρt(x) > 0 and

∫∞

0
ρt(x)dx = 1 for all t > 0, it follows that ρt(x) is a density

valued process. Then writing ωtx = −∂xΣt,t+x we obtain the following dynamics:

dρt(x) = (rtρt(x) + ∂xρt(x))dt+ ωtx(dWt + λtdt). (3)

The process ωtx is subject to the constraints
∫∞

0
ωtxdx = 0 and limx→∞ ωtx = 0,

which implies that it can be expressed in the form ωtx = ρt(x)(νt(x) − ν̄t), where
ν̄t =

∫∞

0
ρt(u)νt(u)du and νt(x) is unconstrained. The process νt(x) plays a role

similar to the HJM forward short rate volatility. However, if the volatility structure
is specified arbitrarily in the HJM theory there is no guarantee that the interest rate
system will be admissible, whereas that feature is built into the present dynamics.
The resulting bond volatility structure Σtx is invariant under transformations of
the form νt(x) → νt(x) + αt. This freedom can be used to set λt = −ν̄t without
loss of generality. Then, both λt and Σtx are determined by νt(x).



Proposition 2. The general admissible term structure evolution based on the

information set generated by a Brownian motion Wt on a Hilbert space H is given

by a measure valued process ρt(x) in D(R1+) satisfying

dρt(x)

ρt(x)
= (ρt(0) + ∂x ln ρt(x)) dt+ (νt(x)− ν̄t) (dWt − ν̄tdt) , (4)

where ν̄t =
∫∞

0
ρt(u)νt(u)du. The process νt(x) can be specified exogenously along

with the initial term structure density ρ0(x).

It follows from the relation ρt(0) = rt, that the process for the short rate satisfies

drt =
(

r2t + ∂xρt(x)|x=0
)

dt+ rt(νt(0)− ν̄t)(dWt − ν̄tdt). (5)

The appearance of r2t in the drift might seem counterintuitive. This is compensated
by the second term appearing in the drift. For example, if we consider the CIR
model (Cox et al. 1985), a calculation shows that the r2t term cancels a similar
term arising from ∂xρt(x)|x=0, leaving the correct mean-reverting behaviour.

Proposition 3. The solution of the dynamical equation for ρt(x) in terms of the

volatility structure νt(x) and the initial term structure density ρ0(x) is

ρt(T − t) = ρ0(T )
exp

(

∫ t

s=0
VsTdWs − 1

2

∫ t

s=0
V 2sTds

)

∫∞

u=t
ρ0(u) exp

(

∫ t

s=0
VsudWs − 1

2

∫ t

s=0
V 2suds

)

du
, (6)

where Vtu = νt(u− t). The corresponding formula for the bond price process is

PtT =

∫∞

u=T
ρ0(u) exp

(

∫ t

s=0
VsudWs − 1

2

∫ t

s=0
V 2suds

)

du

∫∞

u=t
ρ0(u) exp

(

∫ t

s=0
VsudWs − 1

2

∫ t

s=0
V 2suds

)

du
, (7)

and for the unit-initialised money market account Bt = exp
(

∫ t

0
rsds

)

we have

Bt =
exp

(

∫ t

s=0
ν̄sdWs − 1

2

∫ t

s=0
ν̄2sds

)

∫∞

u=t
ρ0(u) exp

(

∫ t

s=0
VsudWs − 1

2

∫ t

s=0
V 2suds

)

du
. (8)

The formulae for ρt(x), PtT and Bt indicated in Proposition 3 are surprisingly
simple, given the nonlinearities of the dynamics of ρt(x). These results can be used
as a starting point for the derivation of new interest rate models, some of which we
remark on briefly below.

Example 3. If νt(x) is chosen to be a deterministic function of t and x then we
obtain a class of ‘quasi-lognormal’ models. In such a model the bond prices are
given by ratios of superpositions of lognormally distributed random variables. ♦



Example 4. Martingale representations for discount bonds. It follows from
Proposition 3 that an alternative expression for ρt(x) is given by

ρt(T − t) =
ρ0(T )MtT

∫∞

u=t
ρ0(u)Mtudu

, (9)

where for each value of T the process MtT is a martingale over the interval 0 ≤ t ≤
T , such thatMtT > 0 andM0T = 1. We see thatMtT is the exponential martingale
associated with VtT . This expression for ρt(T − t) arises also in the Flesaker-
Hughston model (Flesaker & Hughston 1996, 1997, 1998; Rutkowski 1997; Musiela
& Rutkowski 1997; Brody 2000; Hunt & Kennedy 2000), for which we have

PtT =

∫∞

u=T
ρ0(u)Mtudu

∫∞

u=t
ρ0(u)Mtudu

(10)

as a representation for the bond price. ♦
Example 5. Quasi-linear models. Suppose we write ρ0(u) =

∫∞

0
e−uRφ(R)dR,

where φ(R) is the inverse Laplace transform of the initial term structure density.
Then for certain choices of the martingale familyMtu the integration

∫∞

T
e−uRMtudu

can be carried out explicitly. For instance, let Mt be an arbitrary martingale
(0 ≤ t < ∞) and Qt the associated quadratic variation, so (dMt)

2 = dQt, and
set MtT = exp

(

(α + βT )Mt − 1
2
(α + βT )2Qt

)

. This model is obtained by putting
νt(T − t) = (α + βT )σt in Proposition 3, where dMt = σtMtdWt. Then the u-
integration can be carried out explicitly in the expressions for ρt(x) and PtT , and
the results expressed in closed form:

∫ ∞

u=T

e−uRMtudu =
1

|β|√Qt

exp

(

1

2

(Mt − β−1R)2

Qt

+ αβ−1R

)

×N
(

±(Mt − β−1R)√
Qt

∓ (α+ βT )
√

Qt

)

, (11)

where N (x) = (2π)−1/2
∫ x

−∞
exp(−1

2
ξ2)dξ is the normal distribution function, and

the ± sign is chosen according to the sign of β (cf. Brody 2000). These models are
‘quasi-linear’ in the sense that we have a closed form solution for a simple flat-rate
initial term structure, and more general solutions can be constructed by taking
linear superpositions of the resulting ‘simple’ martingale families. ♦

Example 6. Canonical exponential models. If we let ρt(x) be of the form

ρt(x) =
exp (gt(x)− θtht(x))

∫∞

u=0
exp (gt(u)− θtht(u)) du

, (12)

where θt is a one-dimensional diffusion and the processes gt(x) and ht(x) are deter-
ministic, then at each time t the term structure belongs to an exponential family
parameterised by the value of θt. The no-arbitrage condition implies that θt is a



time inhomogeneous square-root process, and that gt(x) and ht(x) satisfy Riccati-
type equations. ♦

Example 7. State-variable models. Here we consider the structure of admissible
term structure dynamics driven by a stationary Markov process. In this case we
write ρt(T −t) = NtT/

∫∞

u=t
Ntudu, and we assume that the martingale family NtT is

of the form NtT = F (ψt, T − t), where the vector state variable ψt is a homogeneous
diffusion process satisfying dψt = α(ψt)dt+ β(ψt)dWt. The condition that NtT has
no drift is ∂TF = ∆F , where ∆ = α∂ψ + 1

2
β2∂2ψ is the generator of the diffusion.

The solution is formally F (ψt, T − t) = e(T−t)∆Φ(ψt), where Φ(ψt) is a positive
bounded function of class C∞. We assume that ∆ is negative and possesses an
inverse ∆−1. The solution for ρt(x) is

ρt(x) =
ex∆Φ(ψt)

∫∞

u=0
eu∆Φ(ψt)du

, (13)

or, equivalently, ρt(x) = −ex∆Φ(ψt)/∆−1Φ(ψt). It follows, further, on account of
the Markov property, thatNtT = Et[Φ(ψT )]. The stationarity property ensures that
α(ψt), β(ψt) and Φ(ψt) determine the term structure at any time t as a function of
the state variable ψt. This applies in particular to the initial term structure. The
short rate is given by rt = −∆Z(ψt)/Z(ψt), where Z(ψt) = ∆−1Φ(ψt), and for the
bond prices we have Btx = ex∆Z(ψt)/Z(ψt). The forward short rates are then given
by rtx = −ex∆∆Zt/ex∆Zt, where rtx = ft,t+x, and we have ρt(x) = −ex∆∆Zt/Zt.
The significance of the process Z(ψt) is that it represents the state-price density
(cf. Rogers 1997, Hunt & Kennedy 2000), and a calculation shows that dZt/Zt =
−rtdt− λtdWt, where λt = (∂ψ lnZ)βt is the risk premium process. ♦

Let us turn now to the problem of the relative movement of term structures,
which can be given a simple characterisation by the use of information geometry.
Given a density process ρ(x) we form the associated square root process ξ(x).
Letting ν(x) and λ be exogenous and writing ν̄ =

∫∞

0
ρ(x)ν(x)dx, we have

dξ =
(

1
2
rξ(x) + ∂xξ(x)− 1

8
(ν(x)− ν̄)2ξ(x)

)

dt+ 1
2
ξ(x)(ν(x)− ν̄)(dW + λdt), (14)

where for convenience here we suppress the time index. Given a pair of such
processes ξ1(x) and ξ2(x) we form the process for the cosine of the spherical distance
φ12 between the corresponding yield curves given in formula (1). An increase in
cosφ12 means a decrease in the distance. Writing σ(x) = ν(x) −

∫∞

0
ξ2(x)ν(x)dx,

for the dynamics of cosφ12 we obtain

d cosφ12 =

(

1
2
(r1 + r2) cosφ12 −

√
r1r2 − 1

8

∫ ∞

0

(σ1(x)− σ2(x))
2ξ1(x)ξ2(x)dx

)

dt

+1
2

(
∫ ∞

0

(σ1(x) + σ2(x))ξ1(x)ξ2(x)dx

)

(dW + λdt). (15)



A special case arises when we consider the relative dynamics of two yield curves with
differing initial conditions but governed by the same volatility and risk premium
ν(x) and λ. Defining ν̄12 =

∫∞

0
ξ1(x)ξ2(x)ν(x)dx, we have:

Proposition 4. The Bhattacharyya distance process for two yield curves subject
to the same underlying interest rate dynamics satisfies

d cosφ12 =
(

1
2
(r1 + r2) cosφ12 −

√
r1r2 − 1

8
(ν̄1 − ν̄2)

2 cosφ12
)

dt

+
(

ν̄12 − 1
2
(ν̄1 + ν̄2) cosφ12

)

(dW + λdt). (16)

The distance process is clearly invariant under transformations of the form
ν(x)→ ν(x)+α. It is interesting to note that the ratio of the geometric and arith-
metic means of the short rates plays a critical role in determining the behaviour of
cosφ. In particular, in a risk neutral world the two curves will necessarily tend to di-
verge once the distance is sufficiently great to ensure that cosφ ≤ 2

√
r1r2/(r1+r2).
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