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1. Introduction

Dynamical models for interest rates suffer from the fact that it is difficult to isolate the

independent degrees of freedom in the evolution of the term structure. The question

is, which ingredients in the determination of an interest rate model can and should be

specified independently and exogenously? A related issue, important for applications, is

the determination of an appropriate data set for the specification of initial conditions—

the so-called ‘calibration problem’.

Traditionally interest rate models have tended to focus either on discount bonds

or on rates. Depending on which choice is made, the resulting models take different

forms, and hence have a different feel to them. Fundamentally, however, it should not

make any difference whether a model is based on bonds or rates. To develop this point

further we introduce some notation. Let time 0 denote the present. We write PtT for

the value at time t of a discount bond that matures to deliver one unit of currency at

time T . The associated interest rate LtT , expressed on a simple basis, is determined by

the relation

PtT =
1

1 + (T − t)LtT

. (1)
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Alternatively, we may use the associated continuously compounded rate RtT defined by

PtT = exp (−(T − t)RtT ) . (2)

The dynamics of LtT , RtT , and PtT all look different from one another, even if the

underlying model is the same.

Now suppose we write Ptab for the forward price, contracted at time t, for delivery of

a discount bond at time a that matures at time b. Then a standard arbitrage argument

shows that

Ptab =
Ptb

Pta

. (3)

The corresponding forward interest Ftab, contracted at time t for the period beginning

at time a and ending at time b, expressed on a simple basis, is defined by the relation

Ptab =
1

1 + (b − a)Ftab

. (4)

The associated continuously compounded forward rate Rtab is defined analogously by

the relation

Ptab = exp (−(b − a)Rtab) . (5)

Two other related interest rates of importance are the short rate

rt = Ltt (6)

and the forward short rate

ftT = FtTT (7)

also known as the instantaneous forward rate. These rates are defined by applying

limiting arguments to (1) and (4). Alternatively, we can write

ftT = − ∂

∂T
ln PtT (8)

and

rt = ftt. (9)

Once we have the discount bond system, the associated rates can be directly

constructed. It follows that it is sufficient to consider the problem of examining the

independent dynamical degrees of freedom in the discount bond system. We shall

consider briefly two examples of useful ways in which this can be done for general

interest rate models, indicating as well the associated drawbacks.

Example 1. Dynamic models for the short rate. In this case the model is defined

with respect to a given probability space (Ω,F , P) with filtration {Ft} and a standard

multidimensional Brownian motion W α
t (α = 1, 2, · · · , n), where n is possibly infinite.

The independent degrees of freedom are given by (a) the specification of the short rate

rt as an essentially arbitrary Ito process on (Ω,F , P), and (b) a market risk premium

process λα
t . The model for the discount bonds is

PtT =
1

Λt

Et

[
ΛT exp

(
−

∫ T

t

rsds

)]
, (10)
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where Et denotes conditional expectation with respect to the filtration Ft and the density

martingale Λt is defined by

Λt = exp

(
−

∫ t

0

λsdWs − 1
2

∫ t

0

λ2
sds

)
. (11)

Here and in what follows we use the shortened notation

λsdWs =
n∑

α=1

λα
s dW α

s (12)

for the vector inner product. A similar convention is used for products such as

λ2
s =

∑
α λα

s λα
s . An advantage of this general model is that the processes rt and λα

t can

be specified independently and exogenously, and for interest rate positivity it suffices

to let the process rt be positive. There are two disadvantages to this approach. Firstly,

the model is specified implicitly: the conditional expectation is generally difficult to

calculate. Secondly, the initial term structure is not fed in directly.

A further simplification can be achieved in Example 1 by introducing the state price

density process Zt, given by

Zt = Λt exp

(
−

∫ t

0

rsds

)
, (13)

from which it follows that

PtT =
Et[ZT ]

Zt

. (14)

Then it is sufficient to specify the pricing kernel Zt alone, and we can recover rt and λα
t

from the relation
dZt

Zt

= −rtdt − λtdWt. (15)

Example 2. The Heath-Jarrow-Morton framework. In this case the independent

dynamical degrees of freedom consist of (a) the initial term structure P0T , (b) the

market risk premium process λα
t , and (c) the forward short rate volatility process σα

tT

for each maturity T . The model for the discount bonds is

PtT = exp

(
−

∫ T

t

ftsds

)
. (16)

Here the forward short rates are given by

ftT = − ∂

∂T
ln P0T −

∫ t

s=0

σsT ΩsT ds +

∫ t

s=0

σsT (dWs + λsds), (17)

where

Ωα
tT = −

∫ T

u=t

σα
tudu. (18)

The advantage of the HJM framework is that it allows a direct input of the initial term

structure, as well as control over the volatility structure of the discount bonds. Indeed,

it follows from (16), (17), and (18) that

dPtT

PtT

= rtdt + ΩtT (dWt + λtdt), (19)



Entropy and Information in the Interest Rate Term Structure 4

where rt is given by (10), and as a consequence of (18) we see that the discount bond

volatility ΩtT goes to zero in the limit t → T as the bond matures. A disadvantage of

the HJM approach is that there is no guarantee of interest rate positivity, and it is not

easy to impose a direct condition on σα
tT to achieve this.

In this article we explore an alternative framework for isolating the independent

degrees of freedom in interest rate dynamics. Our approach has the virtue of retaining

the desirable features of both examples cited above, while eliminating the undesirable

features. The key idea, as we discuss in greater detail shortly, is the introduction of a

term structure density process ρt(x) defined by

ρt(x) = − ∂

∂x
Btx. (20)

Here Btx denotes the system of bond prices at time t when we parameterise the bonds

by the tenor variable x = T − t, so

Btx = Pt,t+x, (21)

and we make the reasonable assumption that Btx → 0 for large x. It is then a

straightforward exercise to verify that the interest rate positivity conditions

0 < Btx ≤ 1, and
∂

∂x
Btx < 0 (22)

are equivalent to the following relations on ρt(x):

ρt(x) > 0, and

∫ ∞

0

ρt(x)dx = 1. (23)

We therefore reach the interesting conclusion that any positive interest rate model can

be regarded as a random process on the space of density functions on the positive real

line.

This observation ties in naturally with the general growing interest in modelling the

interest rate term structure as a dynamical system (Björk & Christensen 1999, Björk

& Gombani 1999, Björk 2000, Brody & Hughston 2001a,b, Filipović 2001). The idea

is that we treat the yield curve as a mathematical object in its own right, identified as

a “point” ρ lying in the space M of all possible yield curves. With the specification of

an initial yield curve ρ0 we model the resulting dynamics as a random trajectory ρt in

M. By bringing the structure of M into play it is possible both to clarify the status of

existing interest models, and also to devise new interest rate models. In what follows

we shall sketch some examples of new models that can be developed by following this

line of argument.

2. Admissible term structures

An interesting consequence of the characterisation of the positive interest property in

terms of a density function is that there is a natural ‘information geometry’ associated

with the space of yield curves, which we now proceed to describe. For this purpose it

suffices for the moment simply to consider properties of the initial term structure. Let
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t = 0 denote the present, and P0x a family of discount bond prices satisfying P00 = 1,

where x is the tenor (0 ≤ x < ∞). We impose the condition that interest rates should

always be positive with the following criterion:

Definition. A term structure is said to be admissible if the discount function P0x

is of class C∞ and satisfies 0 < P0x ≤ 1, ∂xP0x < 0, and limx→∞ P0x = 0.

An admissible discount function can be viewed as a complementary probability

distribution. In other words, we can think of the tenor date as an abstract random

variable X, and for its distribution write

Pr[X < x] = 1 − P0x. (24)

The associated density function ρ(x) = −∂xP0x satisfies ρ(x) > 0 for all x, and∫ ∞
x

ρ(u)du = P0x. We say that a density function is smooth if it is of class C∞ on

the positive half-line R
1
+ = [0,∞). Then we have the following characterisation of the

space M:

Proposition 1. The system of admissible term structures is isomorphic to the

convex space D(R1
+) of everywhere positive smooth density functions on the positive real

line.

This idea is illustrated in Figure 1. The requirement that P0x should be of class

C∞ can be weakened, but we would argue that in practice any term structure can be

approximated arbitrarily closely by a ‘nearby’ term structure with a smooth density.

It is reasonable at least to insist that the forward short rate curve f0x = −∂x ln P0x is

piecewise continuous and nonvanishing for all x < ∞.

Given a pair of term structure densities ρ1(x) and ρ2(x) we can define a natural

distance function φ12 on M by

φ12 = cos−1

∫ ∞

0

ξ1(x)ξ2(x)dx, (25)

where ξi(x) =
√

ρi(x). We call this angle the Bhattacharyya distance between the given

yield curves (cf. Bhattacharyya 1943). The geometrical interpretation of φ12 arises from
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Figure 1. The system of admissible term structures. A smooth positive interest
term structure can be regarded as a point in D(R1

+), the convex space of smooth and
everywhere positive density functions on the positive half-line R

1
+. Associated with

each point ρ ∈ D(R1
+) there is a ray ξ lying in the positive orthant S+ of the unit

sphere S in the Hilbert space H = L2(R1
+). A dynamical trajectory on D(R1

+) can
then be mapped to a corresponding trajectory in S+.
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the fact that the map ρ(x) → ξ(x) associates to each point of M a point in the positive

orthant S+ of the unit sphere in the Hilbert space L2(R1
+), and φ12 is the resulting

spherical angle on S+. Note that 0 ≤ φ < 1
2
π and that orthogonality can never be

achieved if forward rates are nonvanishing.

As a simple illustration we consider the family of discount bonds given by

P0x =

(
1 +

Rx

κ

)−κ

, (26)

where R and κ are constants. In this case we have a flat term structure, with a constant

annualised rate of interest R assuming compounding at the frequency κ over the life of

each bond (κ need not be an integer). For κ = 1 this reduces to the case of a flat rate

on the basis of a simple yield, and in the limit κ → ∞ we recover the case of a flat

rate on the basis of continuous compounding. For the density function ρ(x) = −∂xP0x

associated with (26) we obtain

ρ(x) = R

(
1 +

Rx

κ

)−(κ+1)

. (27)

Let us write ρi(x) for the density corresponding to R = Ri (i = 1, 2) for a fixed value of

κ. A direct calculation of the integral (25) gives

φ12 = cos−1

( √
R1R2

R1 − R2

log
R1

R2

)
(28)

for the distance when κ = 1. In the limit κ → ∞ (continuous compounding) we have

φ12 = cos−1

(
2
√

R1R2

R1 + R2

)
, (29)

where the bracketed term in (29) is the ratio of the geometric and arithmetic means of

the two rates. Note that in this limit we have ρ(x) → Re−Rx.

3. Dynamics of the term structure density

Now let us consider in more detail the evolution of the term structure density. Here

we follow the line of argument presented in Brody & Hughston (2001a,b). We write

PtT for the random value at time t of a discount bond that matures at time T , where

T ∈ R
1
+ and 0 ≤ t ≤ T , and assume, for each T , that PtT is an Ito process on the

interval t ∈ [0, T ], for which the dynamics can be expressed in the form

dPtT = mtT dt + ΣtT dWt. (30)

The bond price process PtT is assumed for each value of T ≥ t to be adapted to

the augmented filtration generated by Wt. The absolute drift mtT and the absolute

volatility process ΣtT are assumed to satisfy regularity conditions sufficient to ensure

that ∂T PtT is also an Ito process. For interest rate positivity we require 0 < PtT ≤ 1

and ∂T PtT < 0. Additionally we impose the asymptotic conditions limT→∞ PtT = 0, and

limT→∞ ∂T PtT = 0.
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We define the forward short rate ftT and the short rate rt as in (8) and (9). Because

PtT is positive, ftT is an Ito process iff −∂T PtT is an Ito process. Note that ftT is the

forward rate fixed at time t for the short rate at time T .

For no arbitrage we require the existence of an exogenous market risk premium

process λt such that the absolute drift is of the form

mtT = rtPtT + λtΣtT . (31)

We do not assume the bond market is complete. If the bond market is complete,

however, then λt is determined endogenously by the bond price system.

We introduce the Musiela parameterisation x = T − t for the tenor, and write

Btx = Pt,t+x for the price at time t of a bond for which the time to maturity is x. As a

consequence of (30) and (31) we have the following dynamics for Btx:

dBtx = (rt − ft,t+x)Btxdt + Σt,t+x(dWt + λtdt). (32)

Now suppose we consider the time dependent term structure density ρt(x) defined

by (20), for which we have the normalisation condition∫ ∞

x=0

ρt(x)dx = 1, (33)

or equivalently∫ ∞

u=t

ρt(u − t)du = 1. (34)

The relation

ρt(T − t) = ftT PtT (35)

then allows us to deduce an interesting interpretation of the normalisation condition.

In particular, the formula∫ ∞

t

Ptuftudu = 1 (36)

says that the value at time t of a continuous cash flow in perpetuity that pays the

small amount ftudu at time u is always unity. Thus we can think of ftu as defining the

‘convenience yield’ associated with a position in cash. An analogous calculation shows

that ∫ ∞

t

P κ
tuftudu =

1

κ
(37)

for any positive value of the exponent κ. This relation can be interpreted by saying that

if we ‘fix’ the convenience yield (e.g., by swapping the unit of cash for the corresponding

future cash flow), and then rescale all the interest rates Rtu by the same factor κ, so

Rtu → κRtu for all u ≥ t, where Rtu is given by (2), then the value of the promised cash

flow scales inversely with respect to κ.

Returning now to the evolutionary equation (32), suppose we write

ωtx = −∂xΣt,t+x. (38)
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Then we obtain the following dynamics for ρt(x):

dρt(x) = (rtρt(x) + ∂xρt(x))dt + ωtx(dWt + λtdt). (39)

The process ωtx is subject to the constraint
∫ ∞

0
ωtxdx = 0, which implies that ωtx is of

the form

ωtx = ρt(x)(νt(x) − ν̄t), (40)

where νt(x) is unconstrained, and

ν̄t =

∫ ∞

0

ρt(u)νt(u)du. (41)

It follows from equation (38) that the absolute discount bond volatility ΣtT is given in

the Musiela parameterisation by

Σt,t+x =

∫ ∞

u=x

ωtudu

=

∫ ∞

u=x

ρt(u)νt(u)du − ν̄tBtx. (42)

This relation has an interesting probabilistic interpretation. Suppose, in particular, we

write Ix(u) for the indicator function

Ix(u) = χ(u ≥ x), (43)

where χ(A) is unity if A is true and vanishes otherwise. Then the bond price Btx can

be written in the form of an abstract ‘expectation’:

Btx =

∫ ∞

u=0

ρt(u)Ix(u)du

= Mt [Ix] , (44)

where

Mt[g] =

∫ ∞

u=0

ρt(u)g(u)du (45)

for any function g(x). The absolute discount bond volatility can then be expressed as

an abstract covariance of the form

Σt,t+x = Mt [Ixνt] − Mt [Ix] Mt[νt]. (46)

As a consequence of (46) we see that the bond volatility structure Σt,t+x is invariant

under the transformation νt(x) → νt(x) + αt, where αt is independent of x. This also

follows directly from (40). This ‘gauge’ freedom can be used to set λt = −ν̄t. Then λt

and Σtx are both determined by νt(x).

Proposition 2. The general admissible term structure evolution based on the

filtration generated by a Brownian motion Wt on H is a measure valued process ρt(x)

on D(R1
+) that satisfies

dρt(x) = (rtρt(x) + ∂xρt(x)) dt + ρt(x) (νt(x) − ν̄t) (dWt − ν̄tdt) , (47)
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where ν̄t =
∫ ∞

0
ρt(u)νt(u)du. The volatility structure νt(x) can be specified exogenously

along with the initial term structure density ρ0(x). The associated short rate process

rt = ρt(0) satisfies

drt =
(
r2
t + ∂xρt(x)|x=0

)
dt + rt(νt(0) − ν̄t)(dWt − ν̄tdt). (48)

Proposition 3. The solution of the dynamical equation for ρt(x) in terms of the

volatility structure νt(x) and the initial term structure density ρ0(x) is

ρt(T − t) = ρ0(T )
exp

(∫ t

s=0
VsT dWs − 1

2

∫ t

s=0
V 2

sT ds
)

∫ ∞
u=t

ρ0(u) exp
(∫ t

s=0
VsudWs − 1

2

∫ t

s=0
V 2

suds
)

du
, (49)

where

Vtu = νt(u − t). (50)

Proof. The second term in the drift on the right of (47) can be eliminated by setting

x = T − t, which gives us

dρt(T − t) = rtρt(T − t)dt + ρt(T − t) (νt(T − t) − ν̄t) (dWt − ν̄tdt) . (51)

Integrating this relation and separating out the terms involving ν̄t we obtain

ρt(T − t) = ρ0(T )
exp

(∫ t

s=0
rsds +

∫ t

s=0
νs(T − s)dWs − 1

2

∫ t

s=0
ν2

s (T − s)ds
)

exp
(∫ t

s=0
ν̄sdWs − 1

2

∫ t

s=0
ν̄2

sds
) . (52)

It follows by use of the definition (50) that

ρt(T − t) = ρ0(T )
exp

(∫ t

s=0
rsds +

∫ t

s=0
VsT dWs − 1

2

∫ t

s=0
V 2

sT ds
)

exp
(∫ t

s=0
ν̄sdWs − 1

2

∫ t

s=0
ν̄2

sds
) . (53)

Then with an application of the normalisation condition (34) we deduce as a consequence

of (53) that

exp

(
−

∫ t

s=0

rsds +

∫ t

s=0

ν̄sdWs − 1
2

∫ t

s=0

ν̄2
sds

)

=

∫ ∞

u=t

ρ0(u) exp

(∫ t

s=0

VsudWs − 1
2

∫ t

s=0

V 2
suds

)
du. (54)

When this relation is inserted in the denominator of (53), we immediately obtain (49).

♦
It is interesting in this connection to note, by setting T = t in (49), that the short

rate process is given by

rt = ρ0(t)
exp

(∫ t

s=0
VstdWs − 1

2

∫ t

s=0
V 2

stds
)

∫ ∞
u=t

ρ0(u) exp
(∫ t

s=0
VsudWs − 1

2

∫ t

s=0
V 2

suds
)

du
. (55)



Entropy and Information in the Interest Rate Term Structure 10

We observe, in particular, that in a deterministic model, with Vst = 0, this formula

reduces to rt = ρ0(t)/
∫ ∞

t
ρ0(u)du, or, in other words, rt = f0t. For the market risk

premium process it follows from (41) together with the relation λt = −ν̄t that

λα
t = −

∫ ∞
u=t

ρ0(u)V α
tu exp

(∫ t

s=0
VsudWs − 1

2

∫ t

s=0
V 2

suds
)

du∫ ∞
u=t

ρ0(u) exp
(∫ t

s=0
VsudWs − 1

2

∫ t

s=0
V 2

suds
)

du
. (56)

These formulae show that, given the initial term structure density ρ0(x) and the

volatility structure νt(x), we can reconstruct the short rate process and the market

risk premium processes. We deduce from (49) that the corresponding formula for the

bond price process is

PtT =

∫ ∞
u=T

ρ0(u) exp
(∫ t

s=0
VsudWs − 1

2

∫ t

s=0
V 2

suds
)

du∫ ∞
u=t

ρ0(u) exp
(∫ t

s=0
VsudWs − 1

2

∫ t

s=0
V 2

suds
)

du
. (57)

For the unit-initialised money market account Bt, satisfying dBt = rtBtdt and B0 = 1,

we have

Bt =
exp

(∫ t

s=0
ν̄sdWs − 1

2

∫ t

s=0
ν̄2

sds
)

∫ ∞
u=t

ρ0(u) exp
(∫ t

s=0
VsudWs − 1

2

∫ t

s=0
V 2

suds
)

du
, (58)

which follows directly from (54). The density martingale Λt is given by

Λt = exp

(∫ t

s=0

ν̄sdWs − 1
2

∫ t

s=0

ν̄2
sds

)
, (59)

and for the state price density we have

Zt =

∫ ∞

u=t

ρ0(u) exp

(∫ t

s=0

VsudWs − 1
2

∫ t

s=0

V 2
suds

)
du. (60)

As a consequence we can then check that Zt = Λt/Bt.

If we divide (49) by (57) we are led to a recipe for constructing the general

positive interest HJM forward short rate system ftT in terms of freely specified data. In

particular, we obtain

ftT = ρ0(T )
exp

(∫ t

s=0
VsT dWs − 1

2

∫ t

s=0
V 2

sT ds
)

∫ ∞
u=T

ρ0(u) exp
(∫ t

s=0
VsudWs − 1

2

∫ t

s=0
V 2

suds
)

du
. (61)

Note that when T = t this expression reduces to formula (55). A short calculation then

allows us to deduce the following result:

Proposition 4. The general positive interest HJM forward short rate volatility

structure is

σtT = ftT (VtT − UtT ) (62)

where ftT is given by (61), and

UtT =

∫ ∞
u=T

ρ0(u)Vtu exp
(∫ t

s=0
VsudWs − 1

2

∫ t

s=0
V 2

suds
)

du∫ ∞
u=T

ρ0(u) exp
(∫ t

s=0
VsudWs − 1

2

∫ t

s=0
V 2

suds
)

du
. (63)
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The initial term structure density ρ0(x) and the volatility structure Vtu (u ≥ t) are freely

specifiable.

In other words, in the HJM theory the forward short rate volatility is not freely

specifiable if the interest rates are to be positive. Instead it must be of the form

(62) where VtT is freely specifiable, along with the initial term structure. This result

establishes a connection between the present approach and Example 2, and takes a

significant step towards the resolution of the outstanding difficulty associated with that

example.

4. Construction of admissible models

As a consequence of Proposition 3 we see that the general term structure density can

also be expressed in the form

ρt(x) =
ρ0(t + x)Mt,t+x∫ ∞

u=0
ρ0(t + u)Mt,t+udu

, (64)

or equivalently

ρt(T − t) =
ρ0(T )MtT∫ ∞

u=t
ρ0(u)Mtudu

, (65)

where for each T the process MtT is a martingale (0 ≤ t ≤ T < ∞) such that MtT > 0

and M0T = 1. The process MtT is the exponential martingale associated with VtT . This

expression for ρt(T − t) arises also in the model of Flesaker and Hughston (1996), in

which the discount bond system has the representation

PtT =

∫ ∞
u=T

ρ0(u)Mtudu∫ ∞
u=t

ρ0(u)Mtudu
. (66)

For details, see, for example, Flesaker & Hughston (1997, 1998), Rutkowski (1997),

Musiela & Rutkowski (1997), Rogers (1997), Brody (2000) and Hunt & Kennedy (2000).

Quasi-lognormal models. An interesting class of specific models is obtained if we

restrict the Brownian motion to be one-dimensional and let the volatility structure

Vtu = νt(u − t) appearing in (49) be deterministic. Then Vtu is a function of two

variables defined on the region 0 ≤ t ≤ u < ∞. The resulting term structure model

has a good deal of tractability and exhibits some desirable features. In particular, the

function Vtu has the right structure for allowing a calibration of the model to a family

of implied caplet volatilities for a fixed strike (e.g., at-the-money). If the dimensionality

of the Brownian motion is increased then other strikes can be incorporated as well.

Semi-linear models. Another interesting special case can be obtained if we write

ρ0(u) =

∫ ∞

0

e−uRφ(R)dR, (67)

for the initial term structure density, where φ(R) is the inverse Laplace transform of

ρ0(u). Then for certain choices of the martingale family Mtu the integration in (66) can
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be carried out explicitly. An example can be obtained as follows. Let Mt be a martingale

(0 ≤ t < ∞) and Qt the associated quadratic variation satisfying (dMt)
2 = dQt, and set

MtT = exp
(
(α + βT )Mt − 1

2
(α + βT )2Qt

)
. (68)

This model arises if we put

νt(T − t) = (α + βT )σt (69)

in Proposition 2, where the process σt is defined by dMt = σtdWt. Then the u-integration

can be carried out explicitly in the expressions for ρt(x) and PtT , and the results can be

expressed in closed form. In particular, the bond prices can be expressed in the form

PtT =

∫ ∞
R=0

φ(R)
(∫ ∞

u=T
e−uRMtudu

)
dR∫ ∞

R=0
φ(R)

(∫ ∞
u=t

e−uRMtudu
)
dR

. (70)

Here the bracketed expression in the integrand in the numerator is given by:∫ ∞

u=T

e−uRMtudu =
1

|β|√Qt

exp

(
(Mt − R/β)2

2Qt

+ αR/β

)

×N
(
±Mt − R/β√

Qt

∓ (α + βT )
√

Qt

)
, (71)

where

N (x) =
1√
2π

∫ x

−∞
exp

(−1
2
ξ2

)
dξ (72)

is the normal distribution function, and the ± sign is chosen in accordance with the sign

of β. For example, in the case of an initial term structure with a constant continuously

compounding rate r, corresponding to the choice φ(R) = δ(R − r), we obtain

PtT =
N

(
±Mt−r/β√

Qt
∓ (α + βT )

√
Qt

)
N

(
±Mt−r/β√

Qt
∓ (α + βt)

√
Qt

) . (73)

5. Moment analysis and the role of the perpetual annuity

Some interesting aspects of the term structure dynamics are captured in the properties

of the moments of ρt(x), defined by

x̄t =

∫ ∞

0

xρt(x)dx, x̄
(n)
t =

∫ ∞

0

(x − x̄t)
nρt(x)dx (74)

where n ≥ 2. In some cases the relevant moments may not exist. For example, in the

case of a continuously compounded flat yield curve given at t = 0 by the density function

ρ0(x) = Re−Rx, we have x̄0 = R−1, x̄
(2)
0 = R−2, x̄

(3)
0 = 3R−3 and x̄

(4)
0 = 9R−4, whereas

in the case of the simple flat term structure, for which ρ0(x) = R/(1+Rx)2, none of the

moments exist. The first four moments, if they exist, are the mean, variance, skewness

and kurtosis of the distribution of the ‘abstract’ random variable X characterising the

term structure. The mean x̄t is a characteristic time-scale associated with the yield

curve, and its inverse 1/x̄t is an associated characteristic yield. The financial significance

of x̄t will be discussed shortly.
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Let us examine the mean and the variance processes of a general admissible

arbitrage-free term structure. For simplicity we introduce the following notation for

the variance process:

vt =

∫ ∞

0

x2ρt(x)dx − (x̄t)
2. (75)

We assume that ρt(x) and the discount bond volatility Σt,t+x fall off sufficiently

rapidly to ensure that limx→∞ xnρt(x) = 0 and limx→∞ xnΣt,t+x = 0 for n = 1, 2, and

that the integrals
∫ ∞

0
xnρt(x)dx and

∫ ∞
0

xn−1Σt,t+xdx exist for n = 1, 2.

Proposition 5. The first two moments x̄t and vt of an admissible arbitrage-free

term structure satisfy

dx̄t = (rtx̄t − 1)dt + Σ̄t(dWt + λtdt), (76)

and

dvt =
(
rt(vt − x̄2

t ) − Σ̄2
t

)
dt + 2

(
Σ̄

(1)
t − x̄tΣ̄t

)
(dWt + λtdt), (77)

where Σ̄t =
∫ ∞

0
Σt,t+xdx and Σ̄

(1)
t =

∫ ∞
0

xΣt,t+xdx.

The proof of Proposition 5 can be found in Brody and Hughston (2001a). There is

a critical value x̄∗
t for the first moment given by

x̄∗
t =

1

rt

(1 − λtΣ̄t), (78)

such that when x̄t > x̄∗
t the drift of x̄t is positive, and the drift increases as x̄ increases.

When x̄t < x̄∗
t , the drift of x̄t is negative, and the drift decreases further as x̄t decreases.

The process vt − x̄2
t measures the extent to which the distribution deviates from the

‘flat’ term structure. The second moment vt of the term structure has a positive drift

providing

vt − x̄2
t >

1

rt

(
Σ̄2

t − 2λt(Σ̄
(1)
t − x̄tΣ̄t)

)
. (79)

The first moment x̄t has the natural financial interpretation of being the value

at time t of a perpetual annuity paid on a continuous basis. In particular, a short

calculation making use of an integration by parts shows that

x̄t =

∫ ∞

0

Btxdx, (80)

corresponding to an annuity of one unit of cash per year paid continuously in perpetuity.

Higher moments of the term structure density can then be interpreted in terms

of the duration, convexity, etc., of the annuity—in other words, as a measure of the

sensitivity of the value of the annuity to an overall change in interest rate levels. For

example, if we write

Btx = e−xrt(x), (81)

where rt(x) is the continuously compounded rate at time t for tenor x, then under a

small parallel shift ∆r in the yield curve given by

rt(x) −→ rt(x) + ∆r, (82)
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we have, to first order,

Btx −→ (1 − x∆r)Btx. (83)

Therefore, to first order the value of the annuity changes according to the scheme

x̄t −→ x̄t − 1
2
∆r

∫ ∞

0

x2ρt(x)dx, (84)

where in obtaining the second term we use an integration by parts. It follows then that:

Proposition 6. Under a parallel shift in the yield curve the change ∆x̄t in the

value of the perpetual is

∆x̄t = −Dtx̄t∆r, (85)

where the duration Dt of the perpetual annuity is given by

Dt =
1
2

∫ ∞
0

x2ρt(x)dx∫ ∞
0

xρt(x)dx
. (86)

6. The information content of the term structure

Now we introduce another important example of a functional of the term structure, the

Shannon entropy of the density function ρt(x). This is defined by

St[ρ] = −
∫ ∞

0

ρt(x) ln ρt(x)dx. (87)

There are other measures of entropy that may also have applications in interest rate

theory, though the Shannon entropy is distinguished amongst these by its simplicity.

Because ρt(x) has dimensions of inverse time, St[ρ] is defined only up to an overall

additive constant. The difference of the entropies associated with two yield curves

therefore has an invariant significance. One can think of St[ρ] as being a measure of

the ‘information content’ of the term structure at time t. In particular, the higher the

value of St[ρ], the lower the information content (see, e.g., Jaynes 1982, 1983, Cover &

Thomas 1991).

Since ρt(x) is subject to a dynamical law, we can infer a corresponding dynamics

for the entropy, given as follows.

Proposition 7. The entropy associated with an admissible arbitrage-free term

structure dynamics obeys the evolutionary law

dSt =
(
rt(St + ln rt − 1) + 1

2
Γt

)
dt +

(∫ ∞

0

νt(x)st(x)dx − ν̄tSt

)
dW ∗

t (88)

where dW ∗ = dWt +λtdt, st(x) = −ρt(x) ln ρt(x) is the entropy density, and the process

Γt is defined by

Γt =

∫ ∞

0

(νt(x) − ν̄t)
2ρt(x)dx. (89)
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Proof. By Ito’s lemma we have

d(ρt(x) ln ρt(x)) = (1 + ln ρt(x))dρt(x) +
1

ρt(x)
(dρt(x))2. (90)

It follows by use of (47) that st(x) satisfies

dst(x) = − (
(1 + ln ρt(x)) (rtρt(x) + ∂xρt(x)) + ρt(x)(νt(x) − ν̄t)

2
)
dt

− ρt(x)(1 + ln ρt(x))(νt(x) − ν̄t)(dWt − ν̄tdt). (91)

The desired result is obtained if we integrate over x and make use of the integral identities∫ ∞

0

∂xρt(x)dx = −rt (92)

and ∫ ∞

0

ln ρt(x)∂xρt(x)dx = rt(1 − ln rt). (93)

♦
The principle of entropy maximisation can be used quite effectively as the basis for

a new yield curve calibration methodology. In particular, given a set of data points on a

yield curve, the least biased and hence most plausible term structure can be determined

by maximising the Shannon entropy subject to the given data constraints.

The general idea behind the maximisation of entropy under constraints can be

sketched as follows. Suppose that, given a function H(x) of a random variable x, we are

told that the expectation of H(x) with respect to an unknown distribution with density

ρ(x) is U , i.e.,∫ ∞

0

H(x)ρ(x)dx = U. (94)

The aim then is to find the density ρ(x) that is least biased and yet consistent with the

information (94). In other words, we wish to eliminate any superfluous information in

ρ(x). In addition to (94), we also have the normalisation condition∫ ∞

0

ρ(x)dx = 1. (95)

Subject to the constraints (94) and (95) we then determine the density ρ(x) that

maximises the entropy. This is most readily carried out by introducing Lagrange

multipliers λ and ν, and considering the variational relation

δ

δρ
(−ρ ln ρ − λρH − νρ) = 0. (96)

The solution is

ρ(x) = exp (−λH(x) − ν − 1) , (97)

where λ and ν are determined implicitly by (94) and (95).

Let us illustrate the idea by considering the situation in which we are given a set

of data points on the yield curve together with the value of a perpetual annuity. The

problem is to calibrate the initial term structure to the given data.
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This example is interesting because if we are given only the value x̄0 of the perpetual

annuity, then the maximum entropy term structure is

ρ0(x) = Re−Rx, (98)

where R = 1/x̄0, and thus P0x = e−Rx for the discount function. Therefore, we see that

it is the annuity constraint that leads to the desired exponential ‘die-off’ of the discount

function. This feature is preserved in the more elaborate examples we discuss below,

where bond data-points are introduced as well.

In the more general situation, the information of the data can be captured by saying

that the bond prices with a given set of tenors xi (i = 1, 2, · · · , r) are observed to be

B0xi
= ηi. In addition, we have the initial value x̄0 = ξ of the perpetual annuity. Subject

to these constraints, it is a straightforward exercise to verify that the maximum entropy

term structure is determined by the variational principle

δ

δρ

(
−ρ(x) ln ρ(x) − λρ(x)x −

r∑
i=1

µiρ(x)Ixi
(x) − νρ(x)

)
= 0, (99)

where the step function Ixi
(x) is given by (43), so Ixi

(x) = 1 for x ≥ xi and vanishes

otherwise. The parameters λ, µi and ν are Lagrange multipliers to be determined by

the normalisation condition (33) and data constraints∫ ∞

x=0

xρ(x)dx = ξ, and

∫ ∞

x=0

Ixi
(x)ρ(x)dx = ηi. (100)

The solution of the variational problem (99) is

ρ(x) =
1

Z(λ, µ)
exp

(
−λx −

r∑
i=1

µiIxi
(x)

)
, (101)

where the normalisation factor Z(λ, µ) = e−1−ν is determined by the integral

Z(λ, µ) =

∫ ∞

0

exp

(
−λx −

r∑
i=1

µiIxi
(x)

)
dx. (102)

The Lagrange multipliers are then determined implicitly by the following relations:

−∂ ln Z

∂λ
= ξ and − ∂ ln Z

∂µi
= ηi. (103)

As a consequence of (101) we see that pointwise calibration to the discount bond prices,

along with the information of the price of the annuity, gives a piecewise exponential term

structure density function. Clearly, if there is further information at our disposal, then

that can also be included in the system of constraints so that all available information

is used efficiently in the calibration procedure. For example, if a set of data points as

well as the second moment of the term structure density is known, then the resulting

term structure becomes piecewise Gaussian.

We now consider in more detail the case where the observed data consist of just

two pieces of information—namely, the bond price P0T1 for a fixed maturity date T1,

and the value ξ = x̄0 of the perpetual annuity. This is, of course, a rather artificial
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example; nevertheless it serves to illuminate some of the main points of the procedure

and has the advantage of being analytically tractable.

It follows from the proceeding discussion that the variational problem in this

example implies the existence of three rates r0, r1, and R such that the term structure

density is

ρ(x) =

{
r0e

−Rx for 0 ≤ x < T1

r1e
−Rx for T1 ≤ x < ∞.

(104)

The relevant constraints are given by:∫ T1

0

ρ(x)dx = 1 − P0T1 (105)

for the bond price;∫ ∞

0

ρ(x)dx = 1 (106)

for the normalisation; and∫ ∞

0

xρ(x)dx = ξ (107)

for the perpetual annuity. A short calculation making use of (104) shows that these

relations reduce to:

1 − r0

R

(
1 − e−RT1

)
= P0T1 , (108)

r1 − r0

R
e−RT1 +

r0

R
= 1, (109)

r1 − r0

R
e−RT1

(
T1 +

1

R

)
+

r0

R2
= ξ. (110)

Clearly, given P0T1 and ξ, we can proceed, by use of (108), (109) and (110), to infer

values of r0, r1, and R. In particular, equation (108) allows us to deduce the bond price

P0T1 if we are given r0 and R, whereas we can use (109) to eliminate r1 in (110) to

obtain
1

R
+ T1

(
1 − r0

R

)
= ξ (111)

for the value of the perpetual in terms of r0 and R. Alternatively, given the initial short

rate r0 and the value of the perpetual ξ we have

R =
1 − r0T1

ξ − T1

. (112)

This value of R can then be inserted in (108) to determine the bond price. The scale

factor r1 is given by

r1 = RP0T1e
RT1 , (113)

and thus we obtain

ρ(x) =

{
r0e

−Rx (0 ≤ x < T1)

RP0T1e
−R(x−T1) (T1 ≤ x < ∞),

(114)
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for the term structure density, and

P0x =

{
1 − r0

R

(
1 − e−Rx

)
(0 ≤ x < T1)

P0T1e
−R(x−T1) (T1 ≤ x < ∞),

(115)

for the discount function, from which yield curve R0x can be constructed via the standard

prescription

R0x = − ln P0x

x
, (116)

and it should be evident by inspection that R0x is continuous in x.

In this example we can alternatively regard the short rate r0 and the bond price

P0T1 as the actual ‘independent’ data. Then (108) can be used to deduce R, which allows

us to infer the annuity price ξ by use of (111). This illustrates the point that, although

we assume from the outset the existence of a perpetual, we can infer an implied value

of that instrument by the use of other market data (e.g., the short rate).

Essentially the same idea carries forward in a consistent way in the case where we

have multiple data points for the bond prices, for a given set of n maturity dates Tj

(j = 1, 2, · · · , n), and we are led to a simple iterative algorithm for determining the term

structure in terms of the short rate and the specified bond data points.

Proposition 8. Given a set of bond prices P0Tj
(j = 1, 2, · · · , n) and the existence

of the value of the perpetual annuity, the maximum entropy term structure density

function is

ρ(x) =
n∑

k=0

ITkTk+1
(x)rke

−Rx. (117)

Here T0 = 0, Tn+1 = ∞, ITkTk+1
(x) = 1 if x ∈ [Tk, Tk+1) and vanishes otherwise, r0 is

the short rate, and

rk = R
P0Tk

− P0Tk+1

e−RTk − e−RTk+1
. (118)

The value of R is determined from equation (108). The corresponding discount function

P0x is given by

P0x = P0Tk
− rk

R
(e−RTk − e−Rx) (119)

for x ∈ [Tk, Tk+1).

Proof. To see this, we insert the piecewise exponential density function (117)

into a series of constraints of the form (105) for the bond prices, together with the

normalisation constraint (106) and the perpetual constraint (107). Then the bond price

constraints give rise to a set of relations of the form
rk

R
(e−RTk − e−RTk+1) = P0Tk

− P0Tk+1
, (120)

for k = 0, 1, · · · , n − 1. In particular, for k = 0, we recover (108), which can be used to

solve for R in terms of the short rate r0 and the bond price P0T1 . Then, by substitution

of this in (120) for general k, and the use of further bond price data, we obtain the other
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rates rk (k 	= n). As for rn, we note that if we divide the integration range in (105) into

two regions [0, Tn] and [Tn,∞], then the normalisation condition becomes

rn

R
e−RTn = P0Tn , (121)

which determines rn in terms of R and P0Tn . Finally, substitution of these results in the

perpetual constraint

1

R

n∑
k=1

(rk − rk−1)e
−RTk

(
Tk +

1

R

)
+

r0

R2
= ξ (122)

allows the implied value ξ of the perpetual annuity to be determined from the short

rate r0 and the bond price data P0Tj
. The discount function can be determined by use

of the fact that

1 − P0x =

∫ x

0

ρ(u)du

=

∫ Tk

0

ρ(u)du + rk

∫ x

Tk

e−Rudu (123)

= 1 − P0Tk
+ rk

∫ x

Tk

e−Rudu,

when x ∈ [Tk, Tk+1). ♦

7. Canonical term structures

As an interesting example of a class of models that arises as a consequence of the

maximisation of an entropy functional under constraints, we let the term structure

density be of the form

ρt(T − t) =
exp (−gtT − θthtT )∫ ∞

u=t
exp (−gtu − θthtu) du

, (124)

where θt is a one-dimensional Ito process, and the functions gtT and htT are deterministic,

defined over the range 0 ≤ t ≤ T < ∞. At each time t the term structure density thus

defined belongs to an exponential family parameterised by the value of θt. If we set

Z(θ) =

∫ ∞

u=t

exp (−gtu − θthtu) du, (125)

then we find that all the moments of the function htT can be determined from the

generating function Z(θ) by formal differentiation. For example, for the first moment

of htT we have∫ ∞

u=t

htuρt(u − t)du = −∂ ln Z(θ)

∂θ
. (126)

The corresponding bond price system can then be written in the Flesaker-Hughston

form

PtT =

∫ ∞
u=T

Ntudu∫ ∞
u=t

Ntudu
, (127)
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where NtT = exp(−gtT − θthtT ). By Ito’s lemma, it follows that NtT satisfies

dNtT

NtT

= −
(
ġtT + θtḣtT

)
dt − htT dθt + 1

2
h2

tT (dθt)
2, (128)

where the dot indicates partial differentiation with respect to t, so ġtT = ∂tgtT and

ḣtT = ∂thtT . We assume that the trajectory θt of the canonical parameter satisfies a

stochastic equation of the form

dθt = αtdt + βtdWt. (129)

The no-arbitrage condition implies that NtT is a positive martingale. Therefore, the

drift of NtT vanishes for all T :

ġtT + ḣtT θt + αthtT = 1
2
β2

t h
2
tT . (130)

This relation implies that the processes αt and βt determining the dynamics of θt are of

the form

αt = Atθt + Bt, and 1
2
β2

t = Ctθt + Dt (131)

where the functions At, Bt, Ct and Dt are deterministic. It follows that θt is a square-

root process. Substitution of these equations into (130) gives a set of Bernoulli equations

of the form

ḣtT + AthtT − Cth
2
tT = 0 (132)

for htT and

ġtT + BthtT − Dth
2
tT = 0 (133)

for gtT . The general solution of (132) is

1

htT

= − exp

(∫ t

0

Audu

)(∫ t

0

Cu

exp(
∫ u

0
Avdv)

du + ET

)
, (134)

where ET is an function of T , determined by the initial term structure.

To proceed further, let us consider the special case where Dt = 0 and θt is positive

and mean-reverting. Then Bt and Ct are both positive and At is negative, and for gtT

we have

gtT = −
∫ t

0

BuhuT du + FT , (135)

where FT is another arbitrary function. In the elementary case where At, Bt and Ct are

constants, the functions htT and gtT are given by

htT =
A

C − GT eAt
(136)

and

gtT =
B

C
ln

(
GT − Ce−At

GT − C

)
+ FT , (137)
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where GT = AET + C. The condition that htT should be positive ensures that GT is

of the form GT = CHT e−AT where the function HT satisfies HT > 1 but is otherwise

arbitrary. For NtT we then obtain:

NtT =

(
HT − eAT

HT − eA(T−t)

)B
C

exp

(
Aθt

C(HT e−A(T−t) − 1)
− FT

)
. (138)

The function FT is then determined by the specification of the initial term structure.

In particular, because N0T = ρ0(T ), we obtain

NtT = ρ0(T )

(
HT − eAT

HT − eA(T−t)

)B
C

exp

(
Aθt

C(HT e−A(T−t) − 1)
− Aθ0

C(HT e−AT − 1)

)
. (139)
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